Two coils have mutual inductance $$0.002 \mathrm{~H}$$. The current changes in the first coil according to the relation $$\mathrm{i}=\mathrm{i}_0 \sin \omega \mathrm{t}$$, where $$\mathrm{i}_0=5 \mathrm{~A}$$ and $$\omega=50 \pi$$ rad/s. The maximum value of emf in the second coil is $$\frac{\pi}{\alpha} \mathrm{~V}$$. The value of $$\alpha$$ is _______.
Two immiscible liquids of refractive indices $$\frac{8}{5}$$ and $$\frac{3}{2}$$ respectively are put in a beaker as shown in the figure. The height of each column is $$6 \mathrm{~cm}$$. A coin is placed at the bottom of the beaker. For near normal vision, the apparent depth of the coin is $$\frac{\alpha}{4} \mathrm{~cm}$$. The value of $$\alpha$$ is _________.
In a nuclear fission process, a high mass nuclide $$(A \approx 236)$$ with binding energy $$7.6 \mathrm{~MeV} /$$ Nucleon dissociated into middle mass nuclides $$(\mathrm{A} \approx 118)$$, having binding energy of $$8.6 \mathrm{~MeV} / \mathrm{Nucleon}$$. The energy released in the process would be ______ $$\mathrm{MeV}$$.
Four particles each of mass $$1 \mathrm{~kg}$$ are placed at four corners of a square of side $$2 \mathrm{~m}$$. Moment of inertia of system about an axis perpendicular to its plane and passing through one of its vertex is _____ $$\mathrm{kgm}^2$$.