1
JEE Main 2024 (Online) 27th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $\overrightarrow{\mathrm{a}}=\hat{i}+2 \hat{j}+\hat{k}, $
$\overrightarrow{\mathrm{b}}=3(\hat{i}-\hat{j}+\hat{k})$.
Let $\overrightarrow{\mathrm{c}}$ be the vector such that $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{b}}$ and $\vec{a} \cdot \vec{c}=3$.
Then $\vec{a} \cdot((\vec{c} \times \vec{b})-\vec{b}-\vec{c})$ is equal to :
A
32
B
36
C
24
D
20
2
JEE Main 2024 (Online) 27th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If A denotes the sum of all the coefficients in the expansion of $\left(1-3 x+10 x^2\right)^{\mathrm{n}}$ and B denotes the sum of all the coefficients in the expansion of $\left(1+x^2\right)^n$, then :
A
$\mathrm{B}=\mathrm{A}^3$
B
$3 \mathrm{A}=\mathrm{B}$
C
$A=3 B$
D
$\mathrm{A}=\mathrm{B}^3$
3
JEE Main 2024 (Online) 27th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The function $f: \mathbf{N}-\{1\} \rightarrow \mathbf{N}$; defined by $f(\mathrm{n})=$ the highest prime factor of $\mathrm{n}$, is :
A
one-one only
B
neither one-one nor onto
C
onto only
D
both one-one and onto
4
JEE Main 2024 (Online) 27th January Morning Shift
Numerical
+4
-1
Change Language
If $8=3+\frac{1}{4}(3+p)+\frac{1}{4^2}(3+2 p)+\frac{1}{4^3}(3+3 p)+\cdots \cdots \infty$, then the value of $p$ is ____________.
Your input ____
JEE Main Papers
2023
2021
EXAM MAP