Let $$S=\{1,2,3,4,5,6\}$$. Then the number of one-one functions $$f: \mathrm{S} \rightarrow \mathrm{P}(\mathrm{S})$$, where $$\mathrm{P}(\mathrm{S})$$ denote the power set of $$\mathrm{S}$$, such that $$f(n) \subset f(\mathrm{~m})$$ where $$n < m$$ is ____________.
Let $$f^{1}(x)=\frac{3 x+2}{2 x+3}, x \in \mathbf{R}-\left\{\frac{-3}{2}\right\}$$ For $$\mathrm{n} \geq 2$$, define $$f^{\mathrm{n}}(x)=f^{1} \mathrm{o} f^{\mathrm{n}-1}(x)$$. If $$f^{5}(x)=\frac{\mathrm{a} x+\mathrm{b}}{\mathrm{b} x+\mathrm{a}}, \operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$$, then $$\mathrm{a}+\mathrm{b}$$ is equal to ____________.
The mean and variance of 7 observations are 8 and 16 respectively. If one observation 14 is omitted and a and b are respectively mean and variance of remaining 6 observation, then $$\mathrm{a+3 b-5}$$ is equal to ___________.
A massless square loop, of wire of resistance $$10 \Omega$$, supporting a mass of $$1 \mathrm{~g}$$, hangs vertically with one of its sides in a uniform magnetic field of $$10^{3} \mathrm{G}$$, directed outwards in the shaded region. A dc voltage $$\mathrm{V}$$ is applied to the loop. For what value of $$\mathrm{V}$$, the magnetic force will exactly balance the weight of the supporting mass of $$1 \mathrm{~g}$$ ?
(If sides of the loop $$=10 \mathrm{~cm}, \mathrm{~g}=10 \mathrm{~ms}^{-2}$$)