1
JEE Main 2023 (Online) 30th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If [t] denotes the greatest integer $$\le \mathrm{t}$$, then the value of $${{3(e - 1)} \over e}\int\limits_1^2 {{x^2}{e^{[x] + [{x^3}]}}dx} $$ is :

A
$$\mathrm{e^8-e}$$
B
$$\mathrm{e^7-1}$$
C
$$\mathrm{e^9-e}$$
D
$$\mathrm{e^8-1}$$
2
JEE Main 2023 (Online) 30th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the coefficient of $$x^{15}$$ in the expansion of $$\left(\mathrm{a} x^{3}+\frac{1}{\mathrm{~b} x^{1 / 3}}\right)^{15}$$ is equal to the coefficient of $$x^{-15}$$ in the expansion of $$\left(a x^{1 / 3}-\frac{1}{b x^{3}}\right)^{15}$$, where $$a$$ and $$b$$ are positive real numbers, then for each such ordered pair $$(\mathrm{a}, \mathrm{b})$$ :

A
a = 3b
B
ab = 1
C
ab = 3
D
a = b
3
JEE Main 2023 (Online) 30th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Suppose $$f: \mathbb{R} \rightarrow(0, \infty)$$ be a differentiable function such that $$5 f(x+y)=f(x) \cdot f(y), \forall x, y \in \mathbb{R}$$. If $$f(3)=320$$, then $$\sum_\limits{n=0}^{5} f(n)$$ is equal to :

A
6875
B
6525
C
6575
D
6825
4
JEE Main 2023 (Online) 30th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the solution of the equation $$\log _{\cos x} \cot x+4 \log _{\sin x} \tan x=1, x \in\left(0, \frac{\pi}{2}\right)$$, is $$\sin ^{-1}\left(\frac{\alpha+\sqrt{\beta}}{2}\right)$$, where $$\alpha$$, $$\beta$$ are integers, then $$\alpha+\beta$$ is equal to :

A
3
B
6
C
4
D
5
JEE Main Papers
2023
2021
EXAM MAP