Speed of an electron in Bohr's $$7^{\text {th }}$$ orbit for Hydrogen atom is $$3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$$. The corresponding speed of the electron in $$3^{\text {rd }}$$ orbit, in $$\mathrm{m} / \mathrm{s}$$ is :
The magnetic moments associated with two closely wound circular coils $$\mathrm{A}$$ and $$\mathrm{B}$$ of radius $$\mathrm{r}_{\mathrm{A}}=10$$ $$\mathrm{cm}$$ and $$\mathrm{r}_{\mathrm{B}}=20 \mathrm{~cm}$$ respectively are equal if : (Where $$\mathrm{N}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}$$ and $$\mathrm{N}_{\mathrm{B}}, \mathrm{I}_{\mathrm{B}}$$ are number of turn and current of $$\mathrm{A}$$ and $$\mathrm{B}$$ respectively)
The figure represents the momentum time ($$\mathrm{p}-\mathrm{t}$$) curve for a particle moving along an axis under the influence of the force. Identify the regions on the graph where the magnitude of the force is maximum and minimum respectively?
If $$\left(t_{3}-t_{2}\right) < t_{1}$$
If the gravitational field in the space is given as $$\left(-\frac{K}{r^{2}}\right)$$. Taking the reference point to be at $$\mathrm{r}=2 \mathrm{~cm}$$ with gravitational potential $$\mathrm{V}=10 \mathrm{~J} / \mathrm{kg}$$. Find the gravitational potential at $$\mathrm{r}=3 \mathrm{~cm}$$ in SI unit (Given, that $$\mathrm{K}=6 \mathrm{~Jcm} / \mathrm{kg}$$)