The minimum number of elements that must be added to the relation $$ \mathrm{R}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{c})\}$$ on the set $$\{a, b, c\}$$ so that it becomes symmetric and transitive is :
Let the system of linear equations
$$x+y+kz=2$$
$$2x+3y-z=1$$
$$3x+4y+2z=k$$
have infinitely many solutions. Then the system
$$(k+1)x+(2k-1)y=7$$
$$(2k+1)x+(k+5)y=10$$
has :
If [t] denotes the greatest integer $$\le \mathrm{t}$$, then the value of $${{3(e - 1)} \over e}\int\limits_1^2 {{x^2}{e^{[x] + [{x^3}]}}dx} $$ is :
If the coefficient of $$x^{15}$$ in the expansion of $$\left(\mathrm{a} x^{3}+\frac{1}{\mathrm{~b} x^{1 / 3}}\right)^{15}$$ is equal to the coefficient of $$x^{-15}$$ in the expansion of $$\left(a x^{1 / 3}-\frac{1}{b x^{3}}\right)^{15}$$, where $$a$$ and $$b$$ are positive real numbers, then for each such ordered pair $$(\mathrm{a}, \mathrm{b})$$ :