Number of 4-digit numbers (the repetition of digits is allowed) which are made using the digits 1, 2, 3 and 5, and are divisible by 15, is equal to ___________.
Let $$z=1+i$$ and $$z_{1}=\frac{1+i \bar{z}}{\bar{z}(1-z)+\frac{1}{z}}$$. Then $$\frac{12}{\pi} \arg \left(z_{1}\right)$$ is equal to __________.
Let $$\alpha$$ be the area of the larger region bounded by the curve $$y^{2}=8 x$$ and the lines $$y=x$$ and $$x=2$$, which lies in the first quadrant. Then the value of $$3 \alpha$$ is equal to ___________.
Let $$S=\{1,2,3,4,5,6\}$$. Then the number of one-one functions $$f: \mathrm{S} \rightarrow \mathrm{P}(\mathrm{S})$$, where $$\mathrm{P}(\mathrm{S})$$ denote the power set of $$\mathrm{S}$$, such that $$f(n) \subset f(\mathrm{~m})$$ where $$n < m$$ is ____________.