Let $$\alpha$$ be the area of the larger region bounded by the curve $$y^{2}=8 x$$ and the lines $$y=x$$ and $$x=2$$, which lies in the first quadrant. Then the value of $$3 \alpha$$ is equal to ___________.
Let $$S=\{1,2,3,4,5,6\}$$. Then the number of one-one functions $$f: \mathrm{S} \rightarrow \mathrm{P}(\mathrm{S})$$, where $$\mathrm{P}(\mathrm{S})$$ denote the power set of $$\mathrm{S}$$, such that $$f(n) \subset f(\mathrm{~m})$$ where $$n < m$$ is ____________.
Let $$f^{1}(x)=\frac{3 x+2}{2 x+3}, x \in \mathbf{R}-\left\{\frac{-3}{2}\right\}$$ For $$\mathrm{n} \geq 2$$, define $$f^{\mathrm{n}}(x)=f^{1} \mathrm{o} f^{\mathrm{n}-1}(x)$$. If $$f^{5}(x)=\frac{\mathrm{a} x+\mathrm{b}}{\mathrm{b} x+\mathrm{a}}, \operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$$, then $$\mathrm{a}+\mathrm{b}$$ is equal to ____________.
The mean and variance of 7 observations are 8 and 16 respectively. If one observation 14 is omitted and a and b are respectively mean and variance of remaining 6 observation, then $$\mathrm{a+3 b-5}$$ is equal to ___________.