1
JEE Main 2023 (Online) 29th January Evening Shift
Numerical
+4
-1
Change Language

Let $$\alpha = 8 - 14i,A = \left\{ {z \in c:{{\alpha z - \overline \alpha \overline z } \over {{z^2} - {{\left( {\overline z } \right)}^2} - 112i}}=1} \right\}$$ and $$B = \left\{ {z \in c:\left| {z + 3i} \right| = 4} \right\}$$. Then $$\sum\limits_{z \in A \cap B} {({\mathop{\rm Re}\nolimits} z - {\mathop{\rm Im}\nolimits} z)} $$ is equal to ____________.

Your input ____
2
JEE Main 2023 (Online) 29th January Evening Shift
Numerical
+4
-1
Change Language

Let $$\alpha_1,\alpha_2,....,\alpha_7$$ be the roots of the equation $${x^7} + 3{x^5} - 13{x^3} - 15x = 0$$ and $$|{\alpha _1}| \ge |{\alpha _2}| \ge \,...\, \ge \,|{\alpha _7}|$$. Then $$\alpha_1\alpha_2-\alpha_3\alpha_4+\alpha_5\alpha_6$$ is equal to _________.

Your input ____
3
JEE Main 2023 (Online) 29th January Evening Shift
Numerical
+4
-1
Change Language

Let $$\{ {a_k}\} $$ and $$\{ {b_k}\} ,k \in N$$, be two G.P.s with common ratios $${r_1}$$ and $${r_2}$$ respectively such that $${a_1} = {b_1} = 4$$ and $${r_1} < {r_2}$$. Let $${c_k} = {a_k} + {b_k},k \in N$$. If $${c_2} = 5$$ and $${c_3} = {{13} \over 4}$$ then $$\sum\limits_{k = 1}^\infty {{c_k} - (12{a_6} + 8{b_4})} $$ is equal to __________.

Your input ____
4
JEE Main 2023 (Online) 29th January Evening Shift
Numerical
+4
-1
Change Language

Let A be a symmetric matrix such that $$\mathrm{|A|=2}$$ and $$\left[ {\matrix{ 2 & 1 \cr 3 & {{3 \over 2}} \cr } } \right]A = \left[ {\matrix{ 1 & 2 \cr \alpha & \beta \cr } } \right]$$. If the sum of the diagonal elements of A is $$s$$, then $$\frac{\beta s}{\alpha^2}$$ is equal to __________.

Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12