1
JEE Main 2023 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The value of the integral $$\int_1^2 {\left( {{{{t^4} + 1} \over {{t^6} + 1}}} \right)dt} $$ is

A
$${\tan ^{ - 1}}{1 \over 2} - {1 \over 3}{\tan ^{ - 1}}8 + {\pi \over 3}$$
B
$${\tan ^{ - 1}}2 - {1 \over 3}{\tan ^{ - 1}}8 + {\pi \over 3}$$
C
$${\tan ^{ - 1}}2 + {1 \over 3}{\tan ^{ - 1}}8 - {\pi \over 3}$$
D
$${\tan ^{ - 1}}{1 \over 2} + {1 \over 3}{\tan ^{ - 1}}8 - {\pi \over 3}$$
2
JEE Main 2023 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let K be the sum of the coefficients of the odd powers of $$x$$ in the expansion of $$(1+x)^{99}$$. Let $$a$$ be the middle term in the expansion of $${\left( {2 + {1 \over {\sqrt 2 }}} \right)^{200}}$$. If $${{{}^{200}{C_{99}}K} \over a} = {{{2^l}m} \over n}$$, where m and n are odd numbers, then the ordered pair $$(l,\mathrm{n})$$ is equal to

A
(50, 101)
B
(50, 51)
C
(51, 101)
D
(51, 99)
3
JEE Main 2023 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The value of the integral $$\int\limits_{1/2}^2 {{{{{\tan }^{ - 1}}x} \over x}dx} $$ is equal to :

A
$${\pi \over 2}{\log _e}2$$
B
$${\pi \over 4}{\log _e}2$$
C
$${1 \over 2}{\log _e}2$$
D
$$\pi {\log _e}2$$
4
JEE Main 2023 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The shortest distance between the lines $${{x - 1} \over 2} = {{y + 8} \over -7} = {{z - 4} \over 5}$$ and $${{x - 1} \over 2} = {{y - 2} \over 1} = {{z - 6} \over { - 3}}$$ is :

A
$$2\sqrt3$$
B
$$3\sqrt3$$
C
$$4\sqrt3$$
D
$$5\sqrt3$$
JEE Main Papers
2023
2021
EXAM MAP