Let $$\overrightarrow a = 4\widehat i + 3\widehat j$$ and $$\overrightarrow b = 3\widehat i - 4\widehat j + 5\widehat k$$. If $$\overrightarrow c $$ is a vector such that $$\overrightarrow c .\left( {\overrightarrow a \times \overrightarrow b } \right) + 25 = 0,\overrightarrow c \,.(\widehat i + \widehat j + \widehat k) = 4$$, and projection of $$\overrightarrow c $$ on $$\overrightarrow a $$ is 1, then the projection of $$\overrightarrow c $$ on $$\overrightarrow b $$ equals :
The value of the integral $$\int_1^2 {\left( {{{{t^4} + 1} \over {{t^6} + 1}}} \right)dt} $$ is
Let K be the sum of the coefficients of the odd powers of $$x$$ in the expansion of $$(1+x)^{99}$$. Let $$a$$ be the middle term in the expansion of $${\left( {2 + {1 \over {\sqrt 2 }}} \right)^{200}}$$. If $${{{}^{200}{C_{99}}K} \over a} = {{{2^l}m} \over n}$$, where m and n are odd numbers, then the ordered pair $$(l,\mathrm{n})$$ is equal to
The value of the integral $$\int\limits_{1/2}^2 {{{{{\tan }^{ - 1}}x} \over x}dx} $$ is equal to :