1
JEE Main 2023 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$\overrightarrow a = \widehat i + 2\widehat k,\overrightarrow b = \widehat i + \widehat j + \widehat k,\overrightarrow c = 7\widehat i - 3\widehat j + 4\widehat k,\overrightarrow r \times \overrightarrow b + \overrightarrow b \times \overrightarrow c = \overrightarrow 0 $$ and $$\overrightarrow r \,.\,\overrightarrow a = 0$$. Then $$\overrightarrow r \,.\,\overrightarrow c $$ is equal to :

A
36
B
30
C
34
D
32
2
JEE Main 2023 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The number of 3 digit numbers, that are divisible by either 3 or 4 but not divisible by 48, is :

A
400
B
472
C
507
D
432
3
JEE Main 2023 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mathrm{S} = \{ {w_1},{w_2},......\} $$ be the sample space associated to a random experiment. Let $$P({w_n}) = {{P({w_{n - 1}})} \over 2},n \ge 2$$. Let $$A = \{ 2k + 3l:k,l \in N\} $$ and $$B = \{ {w_n}:n \in A\} $$. Then P(B) is equal to :

A
$$\frac{3}{32}$$
B
$$\frac{1}{32}$$
C
$$\frac{1}{16}$$
D
$$\frac{3}{64}$$
4
JEE Main 2023 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Consider a function $$f:\mathbb{N}\to\mathbb{R}$$, satisfying $$f(1)+2f(2)+3f(3)+....+xf(x)=x(x+1)f(x);x\ge2$$ with $$f(1)=1$$. Then $$\frac{1}{f(2022)}+\frac{1}{f(2028)}$$ is equal to

A
8000
B
8400
C
8100
D
8200
JEE Main Papers
2023
2021
EXAM MAP