1
JEE Main 2023 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$\overrightarrow a = \widehat i + 2\widehat k,\overrightarrow b = \widehat i + \widehat j + \widehat k,\overrightarrow c = 7\widehat i - 3\widehat j + 4\widehat k,\overrightarrow r \times \overrightarrow b + \overrightarrow b \times \overrightarrow c = \overrightarrow 0 $$ and $$\overrightarrow r \,.\,\overrightarrow a = 0$$. Then $$\overrightarrow r \,.\,\overrightarrow c $$ is equal to :

A
36
B
30
C
34
D
32
2
JEE Main 2023 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The number of 3 digit numbers, that are divisible by either 3 or 4 but not divisible by 48, is :

A
400
B
472
C
507
D
432
3
JEE Main 2023 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mathrm{S} = \{ {w_1},{w_2},......\} $$ be the sample space associated to a random experiment. Let $$P({w_n}) = {{P({w_{n - 1}})} \over 2},n \ge 2$$. Let $$A = \{ 2k + 3l:k,l \in N\} $$ and $$B = \{ {w_n}:n \in A\} $$. Then P(B) is equal to :

A
$$\frac{3}{32}$$
B
$$\frac{1}{32}$$
C
$$\frac{1}{16}$$
D
$$\frac{3}{64}$$
4
JEE Main 2023 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Consider a function $$f:\mathbb{N}\to\mathbb{R}$$, satisfying $$f(1)+2f(2)+3f(3)+....+xf(x)=x(x+1)f(x);x\ge2$$ with $$f(1)=1$$. Then $$\frac{1}{f(2022)}+\frac{1}{f(2028)}$$ is equal to

A
8000
B
8400
C
8100
D
8200
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12