Let K be the sum of the coefficients of the odd powers of $$x$$ in the expansion of $$(1+x)^{99}$$. Let $$a$$ be the middle term in the expansion of $${\left( {2 + {1 \over {\sqrt 2 }}} \right)^{200}}$$. If $${{{}^{200}{C_{99}}K} \over a} = {{{2^l}m} \over n}$$, where m and n are odd numbers, then the ordered pair $$(l,\mathrm{n})$$ is equal to
The value of the integral $$\int\limits_{1/2}^2 {{{{{\tan }^{ - 1}}x} \over x}dx} $$ is equal to :
The shortest distance between the lines $${{x - 1} \over 2} = {{y + 8} \over -7} = {{z - 4} \over 5}$$ and $${{x - 1} \over 2} = {{y - 2} \over 1} = {{z - 6} \over { - 3}}$$ is :
Let $$f$$ and $$g$$ be the twice differentiable functions on $$\mathbb{R}$$ such that
$$f''(x)=g''(x)+6x$$
$$f'(1)=4g'(1)-3=9$$
$$f(2)=3g(2)=12$$.
Then which of the following is NOT true?