Let $$S = \left\{ {\alpha :{{\log }_2}({9^{2\alpha - 4}} + 13) - {{\log }_2}\left( {{5 \over 2}.\,{3^{2\alpha - 4}} + 1} \right) = 2} \right\}$$. Then the maximum value of $$\beta$$ for which the equation $${x^2} - 2{\left( {\sum\limits_{\alpha \in s} \alpha } \right)^2}x + \sum\limits_{\alpha \in s} {{{(\alpha + 1)}^2}\beta = 0} $$ has real roots, is ____________.
Let $$\mathrm{A_1,A_2,A_3}$$ be the three A.P. with the same common difference d and having their first terms as $$\mathrm{A,A+1,A+2}$$, respectively. Let a, b, c be the $$\mathrm{7^{th},9^{th},17^{th}}$$ terms of $$\mathrm{A_1,A_2,A_3}$$, respective such that $$\left| {\matrix{ a & 7 & 1 \cr {2b} & {17} & 1 \cr c & {17} & 1 \cr } } \right| + 70 = 0$$.
If $$a=29$$, then the sum of first 20 terms of an AP whose first term is $$c-a-b$$ and common difference is $$\frac{d}{12}$$, is equal to ___________.
If the area enclosed by the parabolas $$\mathrm{P_1:2y=5x^2}$$ and $$\mathrm{P_2:x^2-y+6=0}$$ is equal to the area enclosed by $$\mathrm{P_1}$$ and $$\mathrm{y=\alpha x,\alpha > 0}$$, then $$\alpha^3$$ is equal to ____________.
If the sum of all the solutions of $${\tan ^{ - 1}}\left( {{{2x} \over {1 - {x^2}}}} \right) + {\cot ^{ - 1}}\left( {{{1 - {x^2}} \over {2x}}} \right) = {\pi \over 3}, - 1 < x < 1,x \ne 0$$, is $$\alpha - {4 \over {\sqrt 3 }}$$, then $$\alpha$$ is equal to _____________.