T is the time period of simple pendulum on the earth's surface. Its time period becomes $$x$$ T when taken to a height R (equal to earth's radius) above the earth's surface. Then, the value of $$x$$ will be :
Assume that the earth is a solid sphere of uniform density and a tunnel is dug along its diameter throughout the earth. It is found that when a particle is released in this tunnel, it executes a simple harmonic motion. The mass of the particle is 100 g. The time period of the motion of the particle will be (approximately)
(Take g = 10 m s$$^{-2}$$ , radius of earth = 6400 km)
A car travels a distance of '$$x$$' with speed $$v_1$$ and then same distance '$$x$$' with speed $$v_2$$ in the same direction. The average speed of the car is :
Electron beam used in an electron microscope, when accelerated by a voltage of 20 kV, has a de-Broglie wavelength of $$\lambda_0$$. IF the voltage is increased to 40 kV, then the de-Broglie wavelength associated with the electron beam would be :