A uniform metallic wire carries a current 2 A, when 3.4 V battery is connected across it. The mass of uniform metallic wire is 8.92 $$\times$$ 10$$^{-3}$$ kg, density is 8.92 $$\times$$ 10$$^{3}$$ kg/m$$^3$$ and resistivity is 1.7 $$\times$$ 10$$^{-8}~\Omega$$-$$\mathrm{m}$$. The length of wire is :
A solenoid of 1200 turns is wound uniformly in a single layer on a glass tube 2 m long and 0.2 m in diameter. The magnetic intensity at the center of the solenoid when a current of 2 A flows through it is :
An electromagnetic wave is transporting energy in the negative $$z$$ direction. At a certain point and certain time the direction of electric field of the wave is along positive $$y$$ direction. What will be the direction of the magnetic field of the wave at that point and instant?
An object of mass 8 kg is hanging from one end of a uniform rod CD of mass 2 kg and length 1 m pivoted at its end C on a vertical wall as shown in figure. It is supported by a cable AB such that the system is in equilibrium. The tension in the cable is (Take g = 10 m/s$$^2$$)