64 identical drops each charged upto potential of $$10 ~\mathrm{mV}$$ are combined to form a bigger drop. The potential of the bigger drop will be __________ $$\mathrm{mV}$$.
For a rolling spherical shell, the ratio of rotational kinetic energy and total kinetic energy is $$\frac{x}{5}$$. The value of $$x$$ is ___________.
The current flowing through a conductor connected across a source is $$2 \mathrm{~A}$$ and 1.2 $$\mathrm{A}$$ at $$0^{\circ} \mathrm{C}$$ and $$100^{\circ} \mathrm{C}$$ respectively. The current flowing through the conductor at $$50^{\circ} \mathrm{C}$$ will be ___________ $$\times 10^{2} \mathrm{~mA}$$.
Glycerin of density $$1.25 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$$ is flowing through the conical section of pipe The area of cross-section of the pipe at its ends are $$10 \mathrm{~cm}^{2}$$ and $$5 \mathrm{~cm}^{2}$$ and pressure drop across its length is $$3 ~\mathrm{Nm}^{-2}$$. The rate of flow of glycerin through the pipe is $$x \times 10^{-5} \mathrm{~m}^{3} \mathrm{~s}^{-1}$$. The value of $$x$$ is ___________.