Let the lines $$l_{1}: \frac{x+5}{3}=\frac{y+4}{1}=\frac{z-\alpha}{-2}$$ and $$l_{2}: 3 x+2 y+z-2=0=x-3 y+2 z-13$$ be coplanar. If the point $$\mathrm{P}(a, b, c)$$ on $$l_{1}$$ is nearest to the point $$\mathrm{Q}(-4,-3,2)$$, then $$|a|+|b|+|c|$$ is equal to
The number of five digit numbers, greater than 40000 and divisible by 5 , which can be formed using the digits $$0,1,3,5,7$$ and 9 without repetition, is equal to :
Let $$\mathrm{C}$$ be the circle in the complex plane with centre $$\mathrm{z}_{0}=\frac{1}{2}(1+3 i)$$ and radius $$r=1$$. Let $$\mathrm{z}_{1}=1+\mathrm{i}$$ and the complex number $$z_{2}$$ be outside the circle $$C$$ such that $$\left|z_{1}-z_{0}\right|\left|z_{2}-z_{0}\right|=1$$. If $$z_{0}, z_{1}$$ and $$z_{2}$$ are collinear, then the smaller value of $$\left|z_{2}\right|^{2}$$ is equal to :
If the point $$\left(\alpha, \frac{7 \sqrt{3}}{3}\right)$$ lies on the curve traced by the mid-points of the line segments of the lines $$x \cos \theta+y \sin \theta=7, \theta \in\left(0, \frac{\pi}{2}\right)$$ between the co-ordinates axes, then $$\alpha$$ is equal to :