Two dice A and B are rolled. Let the numbers obtained on A and B be $$\alpha$$ and $$\beta$$ respectively. If the variance of $$\alpha-\beta$$ is $$\frac{p}{q}$$, where $$p$$ and $$q$$ are co-prime, then the sum of the positive divisors of $$p$$ is equal to :
Let $$A=\left[\begin{array}{cc}1 & \frac{1}{51} \\ 0 & 1\end{array}\right]$$. If $$\mathrm{B}=\left[\begin{array}{cc}1 & 2 \\ -1 & -1\end{array}\right] A\left[\begin{array}{cc}-1 & -2 \\ 1 & 1\end{array}\right]$$, then the sum of all the elements of the matrix $$\sum_\limits{n=1}^{50} B^{n}$$ is equal to
Let $$y=y(x), y > 0$$, be a solution curve of the differential equation $$\left(1+x^{2}\right) \mathrm{d} y=y(x-y) \mathrm{d} x$$. If $$y(0)=1$$ and $$y(2 \sqrt{2})=\beta$$, then
Let the lines $$l_{1}: \frac{x+5}{3}=\frac{y+4}{1}=\frac{z-\alpha}{-2}$$ and $$l_{2}: 3 x+2 y+z-2=0=x-3 y+2 z-13$$ be coplanar. If the point $$\mathrm{P}(a, b, c)$$ on $$l_{1}$$ is nearest to the point $$\mathrm{Q}(-4,-3,2)$$, then $$|a|+|b|+|c|$$ is equal to