Let $$\mathrm{C}$$ be the circle in the complex plane with centre $$\mathrm{z}_{0}=\frac{1}{2}(1+3 i)$$ and radius $$r=1$$. Let $$\mathrm{z}_{1}=1+\mathrm{i}$$ and the complex number $$z_{2}$$ be outside the circle $$C$$ such that $$\left|z_{1}-z_{0}\right|\left|z_{2}-z_{0}\right|=1$$. If $$z_{0}, z_{1}$$ and $$z_{2}$$ are collinear, then the smaller value of $$\left|z_{2}\right|^{2}$$ is equal to :
If the point $$\left(\alpha, \frac{7 \sqrt{3}}{3}\right)$$ lies on the curve traced by the mid-points of the line segments of the lines $$x \cos \theta+y \sin \theta=7, \theta \in\left(0, \frac{\pi}{2}\right)$$ between the co-ordinates axes, then $$\alpha$$ is equal to :
Let $$\alpha, \beta$$ be the roots of the quadratic equation $$x^{2}+\sqrt{6} x+3=0$$. Then $$\frac{\alpha^{23}+\beta^{23}+\alpha^{14}+\beta^{14}}{\alpha^{15}+\beta^{15}+\alpha^{10}+\beta^{10}}$$ is equal to :
Let $$\mathrm{P}\left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), \mathrm{Q}, \mathrm{R}$$ and $$\mathrm{S}$$ be four points on the ellipse $$9 x^{2}+4 y^{2}=36$$. Let $$\mathrm{PQ}$$ and $$\mathrm{RS}$$ be mutually perpendicular and pass through the origin. If $$\frac{1}{(P Q)^{2}}+\frac{1}{(R S)^{2}}=\frac{p}{q}$$, where $$p$$ and $$q$$ are coprime, then $$p+q$$ is equal to :