Let $$\alpha, \beta$$ be the roots of the quadratic equation $$x^{2}+\sqrt{6} x+3=0$$. Then $$\frac{\alpha^{23}+\beta^{23}+\alpha^{14}+\beta^{14}}{\alpha^{15}+\beta^{15}+\alpha^{10}+\beta^{10}}$$ is equal to :
Let $$\mathrm{P}\left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), \mathrm{Q}, \mathrm{R}$$ and $$\mathrm{S}$$ be four points on the ellipse $$9 x^{2}+4 y^{2}=36$$. Let $$\mathrm{PQ}$$ and $$\mathrm{RS}$$ be mutually perpendicular and pass through the origin. If $$\frac{1}{(P Q)^{2}}+\frac{1}{(R S)^{2}}=\frac{p}{q}$$, where $$p$$ and $$q$$ are coprime, then $$p+q$$ is equal to :
If the local maximum value of the function $$f(x)=\left(\frac{\sqrt{3 e}}{2 \sin x}\right)^{\sin ^{2} x}, x \in\left(0, \frac{\pi}{2}\right)$$ , is $$\frac{k}{e}$$, then $$\left(\frac{k}{e}\right)^{8}+\frac{k^{8}}{e^{5}}+k^{8}$$ is equal to
The area of the region enclosed by the curve $$y=x^{3}$$ and its tangent at the point $$(-1,-1)$$ is :