The area of the region enclosed by the curve $$y=x^{3}$$ and its tangent at the point $$(-1,-1)$$ is :
Let $$\mathrm{D}$$ be the domain of the function $$f(x)=\sin ^{-1}\left(\log _{3 x}\left(\frac{6+2 \log _{3} x}{-5 x}\right)\right)$$. If the range of the function $$\mathrm{g}: \mathrm{D} \rightarrow \mathbb{R}$$ defined by $$\mathrm{g}(x)=x-[x],([x]$$ is the greatest integer function), is $$(\alpha, \beta)$$, then $$\alpha^{2}+\frac{5}{\beta}$$ is equal to
Let $$\mathrm{D}_{\mathrm{k}}=\left|\begin{array}{ccc}1 & 2 k & 2 k-1 \\ n & n^{2}+n+2 & n^{2} \\ n & n^{2}+n & n^{2}+n+2\end{array}\right|$$. If $$\sum_\limits{k=1}^{n} \mathrm{D}_{\mathrm{k}}=96$$, then $$n$$ is equal to _____________.
Let the digits a, b, c be in A. P. Nine-digit numbers are to be formed using each of these three digits thrice such that three consecutive digits are in A.P. at least once. How many such numbers can be formed?