If the maximum load carried by an elevator is $$1400 \mathrm{~kg}$$ ( $$600 \mathrm{~kg}$$ - Passengers + 800 $$\mathrm{kg}$$ - elevator), which is moving up with a uniform speed of $$3 \mathrm{~m} \mathrm{~s}^{-1}$$ and the frictional force acting on it is $$2000 \mathrm{~N}$$, then the maximum power used by the motor is __________ $$\mathrm{kW}\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$$
An electron revolves around an infinite cylindrical wire having uniform linear charge density $$2 \times 10^{-8} \mathrm{C} \mathrm{m}^{-1}$$ in circular path under the influence of attractive electrostatic field as shown in the figure. The velocity of electron with which it is revolving is ___________ $$\times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$$. Given mass of electron $$=9 \times 10^{-31} \mathrm{~kg}$$
A rectangular parallelopiped is measured as $$1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 100 \mathrm{~cm}$$. If its specific resistance is $$3 \times 10^{-7} ~\Omega \mathrm{m}$$, then the resistance between its two opposite rectangular faces will be ___________ $$\times 10^{-7} ~\Omega$$.
Figure below shows a liquid being pushed out of the tube by a piston having area of cross section $$2.0 \mathrm{~cm}^{2}$$. The area of cross section at the outlet is $$10 \mathrm{~mm}^{2}$$. If the piston is pushed at a speed of $$4 \mathrm{~cm} \mathrm{~s}^{-1}$$, the speed of outgoing fluid is __________ $$\mathrm{cm} \mathrm{s}^{-1}$$