Let $$\mathrm{A}=\{2,3,4\}$$ and $$\mathrm{B}=\{8,9,12\}$$. Then the number of elements in the relation $$\mathrm{R}=\left\{\left(\left(a_{1}, \mathrm{~b}_{1}\right),\left(a_{2}, \mathrm{~b}_{2}\right)\right) \in(A \times B, A \times B): a_{1}\right.$$ divides $$\mathrm{b}_{2}$$ and $$\mathrm{a}_{2}$$ divides $$\left.\mathrm{b}_{1}\right\}$$ is :
Let the tangent at any point P on a curve passing through the points (1, 1) and $$\left(\frac{1}{10}, 100\right)$$, intersect positive $$x$$-axis and $$y$$-axis at the points A and B respectively. If $$\mathrm{PA}: \mathrm{PB}=1: k$$ and $$y=y(x)$$ is the solution of the differential equation $$e^{\frac{d y}{d x}}=k x+\frac{k}{2}, y(0)=k$$, then $$4 y(1)-6 \log _{\mathrm{e}} 3$$ is equal to ____________.
If the area of the region $$\left\{(x, \mathrm{y}):\left|x^{2}-2\right| \leq y \leq x\right\}$$ is $$\mathrm{A}$$, then $$6 \mathrm{A}+16 \sqrt{2}$$ is equal to __________.
The sum of all the four-digit numbers that can be formed using all the digits 2, 1, 2, 3 is equal to __________.