1
JEE Main 2023 (Online) 10th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mu$$ be the mean and $$\sigma$$ be the standard deviation of the distribution

$${x_i}$$ 0 1 2 3 4 5
$${f_i}$$ $$k + 2$$ $$2k$$ $${k^2} - 1$$ $${k^2} - 1$$ $${k^2} + 1$$ $$k - 3$$

where $$\sum f_{i}=62$$. If $$[x]$$ denotes the greatest integer $$\leq x$$, then $$\left[\mu^{2}+\sigma^{2}\right]$$ is equal to :

A
9
B
8
C
6
D
7
2
JEE Main 2023 (Online) 10th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\vec{a}=2 \hat{i}+7 \hat{j}-\hat{k}, \vec{b}=3 \hat{i}+5 \hat{k}$$ and $$\vec{c}=\hat{i}-\hat{j}+2 \hat{k}$$. Let $$\vec{d}$$ be a vector which is perpendicular to both $$\vec{a}$$ and $$\vec{b}$$, and $$\vec{c} \cdot \vec{d}=12$$. Then $$(-\hat{i}+\hat{j}-\hat{k}) \cdot(\vec{c} \times \vec{d})$$ is equal to :

A
24
B
42
C
44
D
48
3
JEE Main 2023 (Online) 10th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the points $$\mathrm{P}$$ and $$\mathrm{Q}$$ are respectively the circumcenter and the orthocentre of a $$\triangle \mathrm{ABC}$$, then $$\overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}}+\overrightarrow{\mathrm{PC}}$$ is equal to :

A
$$\overrightarrow {QP} $$
B
$$\overrightarrow {PQ} $$
C
$$2\overrightarrow {PQ} $$
D
$$2\overrightarrow {QP} $$
4
JEE Main 2023 (Online) 10th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let A be the point $$(1,2)$$ and B be any point on the curve $$x^{2}+y^{2}=16$$. If the centre of the locus of the point P, which divides the line segment $$\mathrm{AB}$$ in the ratio $$3: 2$$ is the point C$$(\alpha, \beta)$$, then the length of the line segment $$\mathrm{AC}$$ is :

A
$$\frac{3 \sqrt{5}}{5}$$
B
$$\frac{6 \sqrt{5}}{5}$$
C
$$\frac{2 \sqrt{5}}{5}$$
D
$$\frac{4 \sqrt{5}}{5}$$
JEE Main Papers
2023
2021
EXAM MAP