1
JEE Main 2023 (Online) 10th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the coefficients of $$x$$ and $$x^{2}$$ in $$(1+x)^{\mathrm{p}}(1-x)^{\mathrm{q}}$$ are 4 and $$-$$5 respectively, then $$2 p+3 q$$ is equal to :

A
66
B
60
C
69
D
63
2
JEE Main 2023 (Online) 10th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f$$ be a continuous function satisfying $$\int_\limits{0}^{t^{2}}\left(f(x)+x^{2}\right) d x=\frac{4}{3} t^{3}, \forall t > 0$$. Then $$f\left(\frac{\pi^{2}}{4}\right)$$ is equal to :

A
$$-\pi\left(1+\frac{\pi^{3}}{16}\right)$$
B
$$\pi\left(1-\frac{\pi^{3}}{16}\right)$$
C
$$-\pi^{2}\left(1+\frac{\pi^{2}}{16}\right)$$
D
$$\pi^{2}\left(1-\frac{\pi^{2}}{16}\right)$$
3
JEE Main 2023 (Online) 10th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

For $$\alpha, \beta, \gamma, \delta \in \mathbb{N}$$, if $$\int\left(\left(\frac{x}{e}\right)^{2 x}+\left(\frac{e}{x}\right)^{2 x}\right) \log _{e} x d x=\frac{1}{\alpha}\left(\frac{x}{e}\right)^{\beta x}-\frac{1}{\gamma}\left(\frac{e}{x}\right)^{\delta x}+C$$ , where $$e=\sum_\limits{n=0}^{\infty} \frac{1}{n !}$$ and $$\mathrm{C}$$ is constant of integration, then $$\alpha+2 \beta+3 \gamma-4 \delta$$ is equal to :

A
$$-8$$
B
$$-4$$
C
1
D
4

4
JEE Main 2023 (Online) 10th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mu$$ be the mean and $$\sigma$$ be the standard deviation of the distribution

$${x_i}$$ 0 1 2 3 4 5
$${f_i}$$ $$k + 2$$ $$2k$$ $${k^2} - 1$$ $${k^2} - 1$$ $${k^2} + 1$$ $$k - 3$$

where $$\sum f_{i}=62$$. If $$[x]$$ denotes the greatest integer $$\leq x$$, then $$\left[\mu^{2}+\sigma^{2}\right]$$ is equal to :

A
9
B
8
C
6
D
7
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12