1
JEE Main 2023 (Online) 10th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the number $$(22)^{2022}+(2022)^{22}$$ leave the remainder $$\alpha$$ when divided by 3 and $$\beta$$ when divided by 7. Then $$\left(\alpha^{2}+\beta^{2}\right)$$ is equal to :

A
13
B
10
C
20
D
5
2
JEE Main 2023 (Online) 10th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mathrm{g}(x)=f(x)+f(1-x)$$ and $$f^{\prime \prime}(x) > 0, x \in(0,1)$$. If $$\mathrm{g}$$ is decreasing in the interval $$(0, a)$$ and increasing in the interval $$(\alpha, 1)$$, then $$\tan ^{-1}(2 \alpha)+\tan ^{-1}\left(\frac{1}{\alpha}\right)+\tan ^{-1}\left(\frac{\alpha+1}{\alpha}\right)$$ is equal to :

A
$$\frac{3 \pi}{4}$$
B
$$\pi$$
C
$$\frac{5 \pi}{4}$$
D
$$\frac{3 \pi}{2}$$
3
JEE Main 2023 (Online) 10th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the coefficients of $$x$$ and $$x^{2}$$ in $$(1+x)^{\mathrm{p}}(1-x)^{\mathrm{q}}$$ are 4 and $$-$$5 respectively, then $$2 p+3 q$$ is equal to :

A
66
B
60
C
69
D
63
4
JEE Main 2023 (Online) 10th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f$$ be a continuous function satisfying $$\int_\limits{0}^{t^{2}}\left(f(x)+x^{2}\right) d x=\frac{4}{3} t^{3}, \forall t > 0$$. Then $$f\left(\frac{\pi^{2}}{4}\right)$$ is equal to :

A
$$-\pi\left(1+\frac{\pi^{3}}{16}\right)$$
B
$$\pi\left(1-\frac{\pi^{3}}{16}\right)$$
C
$$-\pi^{2}\left(1+\frac{\pi^{2}}{16}\right)$$
D
$$\pi^{2}\left(1-\frac{\pi^{2}}{16}\right)$$
JEE Main Papers
2023
2021
EXAM MAP