If $$[t]$$ denotes the greatest integer $$\leq t$$, then the number of points, at which the function $$f(x)=4|2 x+3|+9\left[x+\frac{1}{2}\right]-12[x+20]$$ is not differentiable in the open interval $$(-20,20)$$, is __________.
Let $$A B$$ be a chord of length 12 of the circle $$(x-2)^{2}+(y+1)^{2}=\frac{169}{4}$$. If tangents drawn to the circle at points $$A$$ and $$B$$ intersect at the point $$P$$, then five times the distance of point $$P$$ from chord $$A B$$ is equal to __________.
Let $$\vec{a}$$ and $$\vec{b}$$ be two vectors such that $$|\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2}+2|\vec{b}|^{2}, \vec{a} \cdot \vec{b}=3$$ and $$|\vec{a} \times \vec{b}|^{2}=75$$. Then $$|\vec{a}|^{2}$$ is equal to __________.
$$\text { Let } S=\left\{(x, y) \in \mathbb{N} \times \mathbb{N}: 9(x-3)^{2}+16(y-4)^{2} \leq 144\right\}$$ and $$T=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}:(x-7)^{2}+(y-4)^{2} \leq 36\right\}$$. Then $$n(S \cap T)$$ is equal to __________.