1
JEE Main 2022 (Online) 29th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$m_{1}, m_{2}$$ be the slopes of two adjacent sides of a square of side a such that $$a^{2}+11 a+3\left(m_{1}^{2}+m_{2}^{2}\right)=220$$. If one vertex of the square is $$(10(\cos \alpha-\sin \alpha), 10(\sin \alpha+\cos \alpha))$$, where $$\alpha \in\left(0, \frac{\pi}{2}\right)$$ and the equation of one diagonal is $$(\cos \alpha-\sin \alpha) x+(\sin \alpha+\cos \alpha) y=10$$, then $$72\left(\sin ^{4} \alpha+\cos ^{4} \alpha\right)+a^{2}-3 a+13$$ is equal to :

A
119
B
128
C
145
D
155
2
JEE Main 2022 (Online) 29th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mathrm{A}(\alpha,-2), \mathrm{B}(\alpha, 6)$$ and $$\mathrm{C}\left(\frac{\alpha}{4},-2\right)$$ be vertices of a $$\triangle \mathrm{ABC}$$. If $$\left(5, \frac{\alpha}{4}\right)$$ is the circumcentre of $$\triangle \mathrm{ABC}$$, then which of the following is NOT correct about $$\triangle \mathrm{ABC}$$?

A
area is 24
B
perimeter is 25
C
circumradius is 5
D
inradius is 2
3
JEE Main 2022 (Online) 29th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Bag I contains 3 red, 4 black and 3 white balls and Bag II contains 2 red, 5 black and 2 white balls. One ball is transferred from Bag I to Bag II and then a ball is drawn from Bag II. The ball so drawn is found to be black in colour. Then the probability, that the transferred ball is red, is :

A
$$\frac{4}{9}$$
B
$$\frac{5}{18}$$
C
$$\frac{1}{6}$$
D
$$\frac{3}{10}$$
4
JEE Main 2022 (Online) 29th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mathrm{S}=\{z=x+i y:|z-1+i| \geq|z|,|z|<2,|z+i|=|z-1|\}$$. Then the set of all values of $$x$$, for which $$w=2 x+i y \in \mathrm{S}$$ for some $$y \in \mathbb{R}$$, is :

A
$$\left(-\sqrt{2}, \frac{1}{2 \sqrt{2}}\right]$$
B
$$\left(-\frac{1}{\sqrt{2}}, \frac{1}{4}\right]$$
C
$$\left(-\sqrt{2}, \frac{1}{2}\right]$$
D
$$\left(-\frac{1}{\sqrt{2}}, \frac{1}{2 \sqrt{2}}\right]$$
JEE Main Papers
2023
2021
EXAM MAP