1
JEE Main 2022 (Online) 29th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the system of equations

$$ \begin{aligned} &x+y+z=6 \\ &2 x+5 y+\alpha z=\beta \\ &x+2 y+3 z=14 \end{aligned} $$

has infinitely many solutions, then $$\alpha+\beta$$ is equal to

A
8
B
36
C
44
D
48
2
JEE Main 2022 (Online) 29th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$ \text { Let the function } f(x)=\left\{\begin{array}{cl} \frac{\log _{e}(1+5 x)-\log _{e}(1+\alpha x)}{x} & ;\text { if } x \neq 0 \\ 10 & ; \text { if } x=0 \end{array} \text { be continuous at } x=0 .\right. $$

Then $$\alpha$$ is equal to

A
10
B
$$-$$10
C
5
D
$$-$$5
3
JEE Main 2022 (Online) 29th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$[t]$$ denotes the greatest integer $$\leq t$$, then the value of $$\int_{0}^{1}\left[2 x-\left|3 x^{2}-5 x+2\right|+1\right] \mathrm{d} x$$ is :

A
$$\frac{\sqrt{37}+\sqrt{13}-4}{6}$$
B
$$\frac{\sqrt{37}-\sqrt{13}-4}{6}$$
C
$$\frac{-\sqrt{37}-\sqrt{13}+4}{6}$$
D
$$\frac{-\sqrt{37}+\sqrt{13}+4}{6}$$
4
JEE Main 2022 (Online) 29th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

For $$I(x)=\int \frac{\sec ^{2} x-2022}{\sin ^{2022} x} d x$$, if $$I\left(\frac{\pi}{4}\right)=2^{1011}$$, then

A
$$3^{1010} I\left(\frac{\pi}{3}\right)-I\left(\frac{\pi}{6}\right)=0$$
B
$$3^{1010} I\left(\frac{\pi}{6}\right)-I\left(\frac{\pi}{3}\right)=0$$
C
$$3^{1011} I\left(\frac{\pi}{3}\right)-I\left(\frac{\pi}{6}\right)=0$$
D
$$3^{1011} I\left(\frac{\pi}{6}\right)-I\left(\frac{\pi}{3}\right)=0$$
JEE Main Papers
2023
2021
EXAM MAP