For $$I(x)=\int \frac{\sec ^{2} x-2022}{\sin ^{2022} x} d x$$, if $$I\left(\frac{\pi}{4}\right)=2^{1011}$$, then
If the solution curve of the differential equation $$\frac{d y}{d x}=\frac{x+y-2}{x-y}$$ passes through the points $$(2,1)$$ and $$(\mathrm{k}+1,2), \mathrm{k}>0$$, then
Let $$y=y(x)$$ be the solution curve of the differential equation $$ \frac{d y}{d x}+\left(\frac{2 x^{2}+11 x+13}{x^{3}+6 x^{2}+11 x+6}\right) y=\frac{(x+3)}{x+1}, x>-1$$, which passes through the point $$(0,1)$$. Then $$y(1)$$ is equal to :
Let $$m_{1}, m_{2}$$ be the slopes of two adjacent sides of a square of side a such that $$a^{2}+11 a+3\left(m_{1}^{2}+m_{2}^{2}\right)=220$$. If one vertex of the square is $$(10(\cos \alpha-\sin \alpha), 10(\sin \alpha+\cos \alpha))$$, where $$\alpha \in\left(0, \frac{\pi}{2}\right)$$ and the equation of one diagonal is $$(\cos \alpha-\sin \alpha) x+(\sin \alpha+\cos \alpha) y=10$$, then $$72\left(\sin ^{4} \alpha+\cos ^{4} \alpha\right)+a^{2}-3 a+13$$ is equal to :