1
JEE Main 2022 (Online) 29th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Bag I contains 3 red, 4 black and 3 white balls and Bag II contains 2 red, 5 black and 2 white balls. One ball is transferred from Bag I to Bag II and then a ball is drawn from Bag II. The ball so drawn is found to be black in colour. Then the probability, that the transferred ball is red, is :

A
$$\frac{4}{9}$$
B
$$\frac{5}{18}$$
C
$$\frac{1}{6}$$
D
$$\frac{3}{10}$$
2
JEE Main 2022 (Online) 29th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mathrm{S}=\{z=x+i y:|z-1+i| \geq|z|,|z|<2,|z+i|=|z-1|\}$$. Then the set of all values of $$x$$, for which $$w=2 x+i y \in \mathrm{S}$$ for some $$y \in \mathbb{R}$$, is :

A
$$\left(-\sqrt{2}, \frac{1}{2 \sqrt{2}}\right]$$
B
$$\left(-\frac{1}{\sqrt{2}}, \frac{1}{4}\right]$$
C
$$\left(-\sqrt{2}, \frac{1}{2}\right]$$
D
$$\left(-\frac{1}{\sqrt{2}}, \frac{1}{2 \sqrt{2}}\right]$$
3
JEE Main 2022 (Online) 29th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\vec{a}, \vec{b}, \vec{c}$$ be three coplanar concurrent vectors such that angles between any two of them is same. If the product of their magnitudes is 14 and $$(\vec{a} \times \vec{b}) \cdot(\vec{b} \times \vec{c})+(\vec{b} \times \vec{c}) \cdot(\vec{c} \times \vec{a})+(\vec{c} \times \vec{a}) \cdot(\vec{a} \times \vec{b})=168$$, then $$|\vec{a}|+|\vec{b}|+|\vec{c}|$$ is equal to :

A
10
B
14
C
16
D
18
4
JEE Main 2022 (Online) 29th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The domain of the function $$f(x)=\sin ^{-1}\left(\frac{x^{2}-3 x+2}{x^{2}+2 x+7}\right)$$ is :

A
$$[1, \infty)$$
B
$$[-1,2]$$
C
$$[-1, \infty)$$
D
$$(-\infty, 2]$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12