Let S = {1, 2, 3, 4}. Then the number of elements in the set { f : S $$\times$$ S $$\to$$ S : f is onto and f (a, b) = f (b, a) $$\ge$$ a $$\forall$$ (a, b) $$\in$$ S $$\times$$ S } is ______________.
Velocity (v) and acceleration (a) in two systems of units 1 and 2 are related as $${v_2} = {n \over {{m^2}}}{v_1}$$ and $${a_2} = {{{a_1}} \over {mn}}$$ respectively. Here m and n are constants. The relations for distance and time in two systems respectively are :
A ball is spun with angular acceleration $$\alpha$$ = 6t2 $$-$$ 2t where t is in second and $$\alpha$$ is in rads$$-$$2. At t = 0, the ball has angular velocity of 10 rads$$-$$1 and angular position of 4 rad. The most appropriate expression for the angular position of the ball is :
A block of mass 2 kg moving on a horizontal surface with speed of 4 ms$$-$$1 enters a rough surface ranging from x = 0.5 m to x = 1.5 m. The retarding force in this range of rough surface is related to distance by F = $$-$$kx where k = 12 Nm$$-$$1. The speed of the block as it just crosses the rough surface will be :