Let a triangle be bounded by the lines L1 : 2x + 5y = 10; L2 : $$-$$4x + 3y = 12 and the line L3, which passes through the point P(2, 3), intersects L2 at A and L1 at B. If the point P divides the line-segment AB, internally in the ratio 1 : 3, then the area of the triangle is equal to :
Let a > 0, b > 0. Let e and l respectively be the eccentricity and length of the latus rectum of the hyperbola $${{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1$$. Let e' and l' respectively be the eccentricity and length of the latus rectum of its conjugate hyperbola. If $${e^2} = {{11} \over {14}}l$$ and $${\left( {e'} \right)^2} = {{11} \over 8}l'$$, then the value of $$77a + 44b$$ is equal to :
Let $$\overrightarrow a = \alpha \widehat i + 2\widehat j - \widehat k$$ and $$\overrightarrow b = - 2\widehat i + \alpha \widehat j + \widehat k$$, where $$\alpha \in R$$. If the area of the parallelogram whose adjacent sides are represented by the vectors $$\overrightarrow a $$ and $$\overrightarrow b $$ is $$\sqrt {15({\alpha ^2} + 4)} $$, then the value of $$2{\left| {\overrightarrow a } \right|^2} + \left( {\overrightarrow a \,.\,\overrightarrow b } \right){\left| {\overrightarrow b } \right|^2}$$ is equal to :
If vertex of a parabola is (2, $$-$$1) and the equation of its directrix is 4x $$-$$ 3y = 21, then the length of its latus rectum is :