If one of the diameters of the circle $${x^2} + {y^2} - 2\sqrt 2 x - 6\sqrt 2 y + 14 = 0$$ is a chord of the circle $${(x - 2\sqrt 2 )^2} + {(y - 2\sqrt 2 )^2} = {r^2}$$, then the value of r2 is equal to ____________.
If $$\mathop {\lim }\limits_{x \to 1} {{\sin (3{x^2} - 4x + 1) - {x^2} + 1} \over {2{x^3} - 7{x^2} + ax + b}} = - 2$$, then the value of (a $$-$$ b) is equal to ___________.
Let for n = 1, 2, ......, 50, Sn be the sum of the infinite geometric progression whose first term is n2 and whose common ratio is $${1 \over {{{(n + 1)}^2}}}$$. Then the value of
$${1 \over {26}} + \sum\limits_{n = 1}^{50} {\left( {{S_n} + {2 \over {n + 1}} - n - 1} \right)} $$ is equal to ___________.
If the system of linear equations
$$2x - 3y = \gamma + 5$$,
$$\alpha x + 5y = \beta + 1$$, where $$\alpha$$, $$\beta$$, $$\gamma$$ $$\in$$ R has infinitely many solutions then the value
of | 9$$\alpha$$ + 3$$\beta$$ + 5$$\gamma$$ | is equal to ____________.