Let $$A = \left( {\matrix{ {1 + i} & 1 \cr { - i} & 0 \cr } } \right)$$ where $$i = \sqrt { - 1} $$. Then, the number of elements in the set { n $$\in$$ {1, 2, ......, 100} : An = A } is ____________.
Sum of squares of modulus of all the complex numbers z satisfying $$\overline z = i{z^2} + {z^2} - z$$ is equal to ___________.
Let S = {1, 2, 3, 4}. Then the number of elements in the set { f : S $$\times$$ S $$\to$$ S : f is onto and f (a, b) = f (b, a) $$\ge$$ a $$\forall$$ (a, b) $$\in$$ S $$\times$$ S } is ______________.
Velocity (v) and acceleration (a) in two systems of units 1 and 2 are related as $${v_2} = {n \over {{m^2}}}{v_1}$$ and $${a_2} = {{{a_1}} \over {mn}}$$ respectively. Here m and n are constants. The relations for distance and time in two systems respectively are :