The value of
$$\mathop {\lim }\limits_{n \to \infty } 6\tan \left\{ {\sum\limits_{r = 1}^n {{{\tan }^{ - 1}}\left( {{1 \over {{r^2} + 3r + 3}}} \right)} } \right\}$$ is equal to :
Let $$\overrightarrow a $$ be a vector which is perpendicular to the vector $$3\widehat i + {1 \over 2}\widehat j + 2\widehat k$$. If $$\overrightarrow a \times \left( {2\widehat i + \widehat k} \right) = 2\widehat i - 13\widehat j - 4\widehat k$$, then the projection of the vector $$\overrightarrow a $$ on the vector $$2\widehat i + 2\widehat j + \widehat k$$ is :
If cot$$\alpha$$ = 1 and sec$$\beta$$ = $$ - {5 \over 3}$$, where $$\pi < \alpha < {{3\pi } \over 2}$$ and $${\pi \over 2} < \beta < \pi $$, then the value of $$\tan (\alpha + \beta )$$ and the quadrant in which $$\alpha$$ + $$\beta$$ lies, respectively are :
Let the image of the point P(1, 2, 3) in the line $$L:{{x - 6} \over 3} = {{y - 1} \over 2} = {{z - 2} \over 3}$$ be Q. Let R ($$\alpha$$, $$\beta$$, $$\gamma$$) be a point that divides internally the line segment PQ in the ratio 1 : 3. Then the value of 22 ($$\alpha$$ + $$\beta$$ + $$\gamma$$) is equal to __________.