Let f : R $$\to$$ R be a continuous function satisfying f(x) + f(x + k) = n, for all x $$\in$$ R where k > 0 and n is a positive integer. If $${I_1} = \int\limits_0^{4nk} {f(x)dx} $$ and $${I_2} = \int\limits_{ - k}^{3k} {f(x)dx} $$, then :
The area of the bounded region enclosed by the curve
$$y = 3 - \left| {x - {1 \over 2}} \right| - |x + 1|$$ and the x-axis is :
Let x = x(y) be the solution of the differential equation
$$2y\,{e^{x/{y^2}}}dx + \left( {{y^2} - 4x{e^{x/{y^2}}}} \right)dy = 0$$ such that x(1) = 0. Then, x(e) is equal to :
Let the slope of the tangent to a curve y = f(x) at (x, y) be given by 2 $$\tan x(\cos x - y)$$. If the curve passes through the point $$\left( {{\pi \over 4},0} \right)$$, then the value of $$\int\limits_0^{\pi /2} {y\,dx} $$ is equal to :