Let $$\overrightarrow a = \alpha \widehat i + 2\widehat j - \widehat k$$ and $$\overrightarrow b = - 2\widehat i + \alpha \widehat j + \widehat k$$, where $$\alpha \in R$$. If the area of the parallelogram whose adjacent sides are represented by the vectors $$\overrightarrow a $$ and $$\overrightarrow b $$ is $$\sqrt {15({\alpha ^2} + 4)} $$, then the value of $$2{\left| {\overrightarrow a } \right|^2} + \left( {\overrightarrow a \,.\,\overrightarrow b } \right){\left| {\overrightarrow b } \right|^2}$$ is equal to :
If vertex of a parabola is (2, $$-$$1) and the equation of its directrix is 4x $$-$$ 3y = 21, then the length of its latus rectum is :
The probability that a randomly chosen one-one function from the set {a, b, c, d} to the set {1, 2, 3, 4, 5} satisfies f(a) + 2f(b) $$-$$ f(c) = f(d) is :
The value of
$$\mathop {\lim }\limits_{n \to \infty } 6\tan \left\{ {\sum\limits_{r = 1}^n {{{\tan }^{ - 1}}\left( {{1 \over {{r^2} + 3r + 3}}} \right)} } \right\}$$ is equal to :