A mass $$0.9 \mathrm{~kg}$$, attached to a horizontal spring, executes SHM with an amplitude $$\mathrm{A}_{1}$$. When this mass passes through its mean position, then a smaller mass of $$124 \mathrm{~g}$$ is placed over it and both masses move together with amplitude $$A_{2}$$. If the ratio $$\frac{A_{1}}{A_{2}}$$ is $$\frac{\alpha}{\alpha-1}$$, then the value of $$\alpha$$ will be ___________.
A square aluminum (shear modulus is $$25 \times 10^{9}\, \mathrm{Nm}^{-2}$$) slab of side $$60 \mathrm{~cm}$$ and thickness $$15 \mathrm{~cm}$$ is subjected to a shearing force (on its narrow face) of $$18.0 \times 10^{4}$$ $$\mathrm{N}$$. The lower edge is riveted to the floor. The displacement of the upper edge is ____________ $$\mu$$m.
A pulley of radius $$1.5 \mathrm{~m}$$ is rotated about its axis by a force $$F=\left(12 \mathrm{t}-3 \mathrm{t}^{2}\right) N$$ applied tangentially (while t is measured in seconds). If moment of inertia of the pulley about its axis of rotation is $$4.5 \mathrm{~kg} \mathrm{~m}^{2}$$, the number of rotations made by the pulley before its direction of motion is reversed, will be $$\frac{K}{\pi}$$. The value of K is ___________.
A ball of mass m is thrown vertically upward. Another ball of mass $$2 \mathrm{~m}$$ is thrown at an angle $$\theta$$ with the vertical. Both the balls stay in air for the same period of time. The ratio of the heights attained by the two balls respectively is $$\frac{1}{x}$$. The value of x is _____________.