1
JEE Main 2022 (Online) 27th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$ I=\int_{\pi / 4}^{\pi / 3}\left(\frac{8 \sin x-\sin 2 x}{x}\right) d x $$. Then

A
$${\pi \over 2} < I < {{3\pi } \over 4}$$
B
$${\pi \over 5} < I < {{5\pi } \over {12}}$$
C
$${{5\pi } \over {12}} < I < {{\sqrt 2 } \over 3}\pi $$
D
$${{3\pi } \over 4} < I < \pi $$
2
JEE Main 2022 (Online) 27th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The area of the smaller region enclosed by the curves $$y^{2}=8 x+4$$ and $$x^{2}+y^{2}+4 \sqrt{3} x-4=0$$ is equal to

A
$$\frac{1}{3}(2-12 \sqrt{3}+8 \pi)$$
B
$$\frac{1}{3}(2-12 \sqrt{3}+6 \pi)$$
C
$$\frac{1}{3}(4-12 \sqrt{3}+8 \pi)$$
D
$$\frac{1}{3}(4-12 \sqrt{3}+6 \pi)$$
3
JEE Main 2022 (Online) 27th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$y=y_{1}(x)$$ and $$y=y_{2}(x)$$ be two distinct solutions of the differential equation $$\frac{d y}{d x}=x+y$$, with $$y_{1}(0)=0$$ and $$y_{2}(0)=1$$ respectively. Then, the number of points of intersection of $$y=y_{1}(x)$$ and $$y=y_{2}(x)$$ is

A
0
B
1
C
2
D
3
4
JEE Main 2022 (Online) 27th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\vec{a}=\alpha \hat{i}+\hat{j}+\beta \hat{k}$$ and $$\vec{b}=3 \hat{i}-5 \hat{j}+4 \hat{k}$$ be two vectors, such that $$\vec{a} \times \vec{b}=-\hat{i}+9 \hat{j}+12 \hat{k}$$. Then the projection of $$\vec{b}-2 \vec{a}$$ on $$\vec{b}+\vec{a}$$ is equal to :

A
2
B
$$\frac{39}{5}$$
C
9
D
$$\frac{46}{5}$$
JEE Main Papers
2023
2021
EXAM MAP