Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a function defined as
$$f(x)=a \sin \left(\frac{\pi[x]}{2}\right)+[2-x], a \in \mathbb{R}$$ where $$[t]$$ is the greatest integer less than or equal to $$t$$. If $$\mathop {\lim }\limits_{x \to -1 } f(x)$$ exists, then the value of $$\int\limits_{0}^{4} f(x) d x$$ is equal to
Let $$ I=\int_{\pi / 4}^{\pi / 3}\left(\frac{8 \sin x-\sin 2 x}{x}\right) d x $$. Then
The area of the smaller region enclosed by the curves $$y^{2}=8 x+4$$ and $$x^{2}+y^{2}+4 \sqrt{3} x-4=0$$ is equal to
Let $$y=y_{1}(x)$$ and $$y=y_{2}(x)$$ be two distinct solutions of the differential equation $$\frac{d y}{d x}=x+y$$, with $$y_{1}(0)=0$$ and $$y_{2}(0)=1$$ respectively. Then, the number of points of intersection of $$y=y_{1}(x)$$ and $$y=y_{2}(x)$$ is