A bullet is shot vertically downwards with an initial velocity of $$100 \mathrm{~m} / \mathrm{s}$$ from a certain height. Within 10 s, the bullet reaches the ground and instantaneously comes to rest due to the perfectly inelastic collision. The velocity-time curve for total time $$\mathrm{t}=20 \mathrm{~s}$$ will be:
(Take g = 10 m/s2).
Sand is being dropped from a stationary dropper at a rate of $$0.5 \,\mathrm{kgs}^{-1}$$ on a conveyor belt moving with a velocity of $$5 \mathrm{~ms}^{-1}$$. The power needed to keep the belt moving with the same velocity will be :
A bag is gently dropped on a conveyor belt moving at a speed of $$2 \mathrm{~m} / \mathrm{s}$$. The coefficient of friction between the conveyor belt and bag is $$0.4$$. Initially, the bag slips on the belt before it stops due to friction. The distance travelled by the bag on the belt during slipping motion, is : [Take $$\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{-2}$$ ]
Two cylindrical vessels of equal cross-sectional area $$16 \mathrm{~cm}^{2}$$ contain water upto heights $$100 \mathrm{~cm}$$ and $$150 \mathrm{~cm}$$ respectively. The vessels are interconnected so that the water levels in them become equal. The work done by the force of gravity during the process, is [Take, density of water $$=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$$ and $$\mathrm{g}=10 \mathrm{~ms}^{-2}$$ ] :