In the above reaction, $$5 \mathrm{~g}$$ of toluene is converted into benzaldehyde with $$92 \%$$ yield. The amount of benzaldehyde produced is ______________ $$\times 10^{-2} \mathrm{~g}$$. (Nearest integer)
The domain of the function $$f(x)=\sin ^{-1}\left[2 x^{2}-3\right]+\log _{2}\left(\log _{\frac{1}{2}}\left(x^{2}-5 x+5\right)\right)$$, where [t] is the greatest integer function, is :
Let S be the set of all $$(\alpha, \beta), \pi<\alpha, \beta<2 \pi$$, for which the complex number $$\frac{1-i \sin \alpha}{1+2 i \sin \alpha}$$ is purely imaginary and $$\frac{1+i \cos \beta}{1-2 i \cos \beta}$$ is purely real. Let $$Z_{\alpha \beta}=\sin 2 \alpha+i \cos 2 \beta,(\alpha, \beta) \in S$$. Then $$\sum\limits_{(\alpha, \beta) \in S}\left(i Z_{\alpha \beta}+\frac{1}{i \bar{Z}_{\alpha \beta}}\right)$$ is equal to :
If $$\alpha, \beta$$ are the roots of the equation
$$ x^{2}-\left(5+3^{\sqrt{\log _{3} 5}}-5^{\sqrt{\log _{5} 3}}\right)x+3\left(3^{\left(\log _{3} 5\right)^{\frac{1}{3}}}-5^{\left(\log _{5} 3\right)^{\frac{2}{3}}}-1\right)=0 $$,
then the equation, whose roots are $$\alpha+\frac{1}{\beta}$$ and $$\beta+\frac{1}{\alpha}$$, is :