1
JEE Main 2022 (Online) 27th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the length of the perpendicular drawn from the point $$P(a, 4,2)$$, a $$>0$$ on the line $$\frac{x+1}{2}=\frac{y-3}{3}=\frac{z-1}{-1}$$ is $$2 \sqrt{6}$$ units and $$Q\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$$ is the image of the point P in this line, then $$\mathrm{a}+\sum\limits_{i=1}^{3} \alpha_{i}$$ is equal to :

A
7
B
8
C
12
D
14
2
JEE Main 2022 (Online) 27th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

A six faced die is biased such that

$$3 \times \mathrm{P}($$a prime number$$)\,=6 \times \mathrm{P}($$a composite number$$)\,=2 \times \mathrm{P}(1)$$.

Let X be a random variable that counts the number of times one gets a perfect square on some throws of this die. If the die is thrown twice, then the mean of X is :

A
$$\frac{3}{11}$$
B
$$\frac{5}{11}$$
C
$$\frac{7}{11}$$
D
$$\frac{8}{11}$$
3
JEE Main 2022 (Online) 27th July Evening Shift
Numerical
+4
-1
Change Language

The number of functions $$f$$, from the set $$\mathrm{A}=\left\{x \in \mathbf{N}: x^{2}-10 x+9 \leq 0\right\}$$ to the set $$\mathrm{B}=\left\{\mathrm{n}^{2}: \mathrm{n} \in \mathbf{N}\right\}$$ such that $$f(x) \leq(x-3)^{2}+1$$, for every $$x \in \mathrm{A}$$, is ___________.

Your input ____
4
JEE Main 2022 (Online) 27th July Evening Shift
Numerical
+4
-1
Change Language

Let for the $$9^{\text {th }}$$ term in the binomial expansion of $$(3+6 x)^{\mathrm{n}}$$, in the increasing powers of $$6 x$$, to be the greatest for $$x=\frac{3}{2}$$, the least value of $$\mathrm{n}$$ is $$\mathrm{n}_{0}$$. If $$\mathrm{k}$$ is the ratio of the coefficient of $$x^{6}$$ to the coefficient of $$x^{3}$$, then $$\mathrm{k}+\mathrm{n}_{0}$$ is equal to :

Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12