If the length of the perpendicular drawn from the point $$P(a, 4,2)$$, a $$>0$$ on the line $$\frac{x+1}{2}=\frac{y-3}{3}=\frac{z-1}{-1}$$ is $$2 \sqrt{6}$$ units and $$Q\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$$ is the image of the point P in this line, then $$\mathrm{a}+\sum\limits_{i=1}^{3} \alpha_{i}$$ is equal to :
A six faced die is biased such that
$$3 \times \mathrm{P}($$a prime number$$)\,=6 \times \mathrm{P}($$a composite number$$)\,=2 \times \mathrm{P}(1)$$.
Let X be a random variable that counts the number of times one gets a perfect square on some throws of this die. If the die is thrown twice, then the mean of X is :
The number of functions $$f$$, from the set $$\mathrm{A}=\left\{x \in \mathbf{N}: x^{2}-10 x+9 \leq 0\right\}$$ to the set $$\mathrm{B}=\left\{\mathrm{n}^{2}: \mathrm{n} \in \mathbf{N}\right\}$$ such that $$f(x) \leq(x-3)^{2}+1$$, for every $$x \in \mathrm{A}$$, is ___________.
Let for the $$9^{\text {th }}$$ term in the binomial expansion of $$(3+6 x)^{\mathrm{n}}$$, in the increasing powers of $$6 x$$, to be the greatest for $$x=\frac{3}{2}$$, the least value of $$\mathrm{n}$$ is $$\mathrm{n}_{0}$$. If $$\mathrm{k}$$ is the ratio of the coefficient of $$x^{6}$$ to the coefficient of $$x^{3}$$, then $$\mathrm{k}+\mathrm{n}_{0}$$ is equal to :