1
JEE Main 2022 (Online) 27th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the sum of an infinite G.P., whose first term is a and the common ratio is r, be 5 . Let the sum of its first five terms be $$\frac{98}{25}$$. Then the sum of the first 21 terms of an AP, whose first term is $$10\mathrm{a r}, \mathrm{n}^{\text {th }}$$ term is $$\mathrm{a}_{\mathrm{n}}$$ and the common difference is $$10 \mathrm{ar}^{2}$$, is equal to :

A
$$21 \,\mathrm{a}_{11}$$
B
$$22 \,\mathrm{a}_{11}$$
C
$$15 \,\mathrm{a}_{16}$$
D
$$14 \,\mathrm{a}_{16}$$
2
JEE Main 2022 (Online) 27th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The area of the region enclosed by $$y \leq 4 x^{2}, x^{2} \leq 9 y$$ and $$y \leq 4$$, is equal to :

A
$$\frac{40}{3}$$
B
$$\frac{56}{3}$$
C
$$\frac{112}{3}$$
D
$$\frac{80}{3}$$
3
JEE Main 2022 (Online) 27th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$\int\limits_{0}^{2}\left(\left|2 x^{2}-3 x\right|+\left[x-\frac{1}{2}\right]\right) \mathrm{d} x$$, where [t] is the greatest integer function, is equal to :

A
$$\frac{7}{6}$$
B
$$\frac{19}{12}$$
C
$$\frac{31}{12}$$
D
$$\frac{3}{2}$$
4
JEE Main 2022 (Online) 27th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Consider a curve $$y=y(x)$$ in the first quadrant as shown in the figure. Let the area $$\mathrm{A}_{1}$$ is twice the area $$\mathrm{A}_{2}$$. Then the normal to the curve perpendicular to the line $$2 x-12 y=15$$ does NOT pass through the point.

JEE Main 2022 (Online) 27th July Evening Shift Mathematics - Area Under The Curves Question 52 English

A
(6, 21)
B
(8, 9)
C
(10, $$-$$4)
D
(12, $$-$$15)
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12