If $$\alpha, \beta$$ are the roots of the equation
$$ x^{2}-\left(5+3^{\sqrt{\log _{3} 5}}-5^{\sqrt{\log _{5} 3}}\right)x+3\left(3^{\left(\log _{3} 5\right)^{\frac{1}{3}}}-5^{\left(\log _{5} 3\right)^{\frac{2}{3}}}-1\right)=0 $$,
then the equation, whose roots are $$\alpha+\frac{1}{\beta}$$ and $$\beta+\frac{1}{\alpha}$$, is :
If for $$\mathrm{p} \neq \mathrm{q} \neq 0$$, the function $$f(x)=\frac{\sqrt[7]{\mathrm{p}(729+x)}-3}{\sqrt[3]{729+\mathrm{q} x}-9}$$ is continuous at $$x=0$$, then :
Let $$f(x)=2+|x|-|x-1|+|x+1|, x \in \mathbf{R}$$.
Consider
$$(\mathrm{S} 1): f^{\prime}\left(-\frac{3}{2}\right)+f^{\prime}\left(-\frac{1}{2}\right)+f^{\prime}\left(\frac{1}{2}\right)+f^{\prime}\left(\frac{3}{2}\right)=2$$
$$(\mathrm{S} 2): \int\limits_{-2}^{2} f(x) \mathrm{d} x=12$$
Then,
Let the sum of an infinite G.P., whose first term is a and the common ratio is r, be 5 . Let the sum of its first five terms be $$\frac{98}{25}$$. Then the sum of the first 21 terms of an AP, whose first term is $$10\mathrm{a r}, \mathrm{n}^{\text {th }}$$ term is $$\mathrm{a}_{\mathrm{n}}$$ and the common difference is $$10 \mathrm{ar}^{2}$$, is equal to :