1
JEE Main 2022 (Online) 27th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$\alpha, \beta$$ are the roots of the equation

$$ x^{2}-\left(5+3^{\sqrt{\log _{3} 5}}-5^{\sqrt{\log _{5} 3}}\right)x+3\left(3^{\left(\log _{3} 5\right)^{\frac{1}{3}}}-5^{\left(\log _{5} 3\right)^{\frac{2}{3}}}-1\right)=0 $$,

then the equation, whose roots are $$\alpha+\frac{1}{\beta}$$ and $$\beta+\frac{1}{\alpha}$$, is :

A
$$3 x^{2}-20 x-12=0$$
B
$$3 x^{2}-10 x-4=0$$
C
$$3 x^{2}-10 x+2=0$$
D
$$3 x^{2}-20 x+16=0$$
2
JEE Main 2022 (Online) 27th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If for $$\mathrm{p} \neq \mathrm{q} \neq 0$$, the function $$f(x)=\frac{\sqrt[7]{\mathrm{p}(729+x)}-3}{\sqrt[3]{729+\mathrm{q} x}-9}$$ is continuous at $$x=0$$, then :

A
$$7 p q \,f(0)-1=0$$
B
$$63 q \,f(0)-\mathrm{p}^{2}=0$$
C
$$21 q \,f(0)-\mathrm{p}^{2}=0$$
D
$$7 p q \,f(0)-9=0$$
3
JEE Main 2022 (Online) 27th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f(x)=2+|x|-|x-1|+|x+1|, x \in \mathbf{R}$$.

Consider

$$(\mathrm{S} 1): f^{\prime}\left(-\frac{3}{2}\right)+f^{\prime}\left(-\frac{1}{2}\right)+f^{\prime}\left(\frac{1}{2}\right)+f^{\prime}\left(\frac{3}{2}\right)=2$$

$$(\mathrm{S} 2): \int\limits_{-2}^{2} f(x) \mathrm{d} x=12$$

Then,

A
both (S1) and (S2) are correct
B
both (S1) and (S2) are wrong
C
only (S1) is correct
D
only (S2) is correct
4
JEE Main 2022 (Online) 27th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the sum of an infinite G.P., whose first term is a and the common ratio is r, be 5 . Let the sum of its first five terms be $$\frac{98}{25}$$. Then the sum of the first 21 terms of an AP, whose first term is $$10\mathrm{a r}, \mathrm{n}^{\text {th }}$$ term is $$\mathrm{a}_{\mathrm{n}}$$ and the common difference is $$10 \mathrm{ar}^{2}$$, is equal to :

A
$$21 \,\mathrm{a}_{11}$$
B
$$22 \,\mathrm{a}_{11}$$
C
$$15 \,\mathrm{a}_{16}$$
D
$$14 \,\mathrm{a}_{16}$$
JEE Main Papers
2023
2021
EXAM MAP