A steel wire of length $$3.2 \mathrm{~m}\left(\mathrm{Y}_{\mathrm{s}}=2.0 \times 10^{11} \,\mathrm{Nm}^{-2}\right)$$ and a copper wire of length $$4.4 \mathrm{~m}\left(\mathrm{Y}_{\mathrm{c}}=1.1 \times 10^{11} \,\mathrm{Nm}^{-2}\right)$$, both of radius $$1.4 \mathrm{~mm}$$ are connected end to end. When stretched by a load, the net elongation is found to be $$1.4 \mathrm{~mm}$$. The load applied, in Newton, will be: $$\quad\left(\right.$$ Given $$\pi=\frac{22}{7}$$)
Which statements are correct about degrees of freedom ?
(A) A molecule with n degrees of freedom has n$$^{2}$$ different ways of storing energy.
(B) Each degree of freedom is associated with $$\frac{1}{2}$$ RT average energy per mole.
(C) A monatomic gas molecule has 1 rotational degree of freedom where as diatomic molecule has 2 rotational degrees of freedom.
(D) $$\mathrm{CH}_{4}$$ has a total of 6 degrees of freedom.
Choose the correct answer from the options given below :
A charge of $$4 \,\mu \mathrm{C}$$ is to be divided into two. The distance between the two divided charges is constant. The magnitude of the divided charges so that the force between them is maximum, will be :
(A) The drift velocity of electrons decreases with the increase in the temperature of conductor.
(B) The drift velocity is inversely proportional to the area of cross-section of given conductor.
(C) The drift velocity does not depend on the applied potential difference to the conductor.
(D) The drift velocity of electron is inversely proportional to the length of the conductor.
(E) The drift velocity increases with the increase in the temperature of conductor.
Choose the correct answer from the options given below :