Let $$f(x)=\min \{[x-1],[x-2], \ldots,[x-10]\}$$ where [t] denotes the greatest integer $$\leq \mathrm{t}$$. Then $$\int\limits_{0}^{10} f(x) \mathrm{d} x+\int\limits_{0}^{10}(f(x))^{2} \mathrm{~d} x+\int\limits_{0}^{10}|f(x)| \mathrm{d} x$$ is equal to ________________.
Let f be a differentiable function satisfying $$f(x)=\frac{2}{\sqrt{3}} \int\limits_{0}^{\sqrt{3}} f\left(\frac{\lambda^{2} x}{3}\right) \mathrm{d} \lambda, x>0$$ and $$f(1)=\sqrt{3}$$. If $$y=f(x)$$ passes through the point $$(\alpha, 6)$$, then $$\alpha$$ is equal to _____________.
Let $$\overrightarrow a $$, $$\overrightarrow b $$, $$\overrightarrow c $$ be three non-coplanar vectors such that $$\overrightarrow a $$ $$\times$$ $$\overrightarrow b $$ = 4$$\overrightarrow c $$, $$\overrightarrow b $$ $$\times$$ $$\overrightarrow c $$ = 9$$\overrightarrow a $$ and $$\overrightarrow c $$ $$\times$$ $$\overrightarrow a $$ = $$\alpha$$$$\overrightarrow b $$, $$\alpha$$ > 0. If $$\left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right| + \left| {\overrightarrow c } \right| = {1 \over {36}}$$, then $$\alpha$$ is equal to __________.
An expression of energy density is given by $$u=\frac{\alpha}{\beta} \sin \left(\frac{\alpha x}{k t}\right)$$, where $$\alpha, \beta$$ are constants, $$x$$ is displacement, $$k$$ is Boltzmann constant and t is the temperature. The dimensions of $$\beta$$ will be :