Three masses $$M=100 \mathrm{~kg}, \mathrm{~m}_{1}=10 \mathrm{~kg}$$ and $$\mathrm{m}_{2}=20 \mathrm{~kg}$$ are arranged in a system as shown in figure. All the surfaces are frictionless and strings are inextensible and weightless. The pulleys are also weightless and frictionless. A force $$\mathrm{F}$$ is applied on the system so that the mass $$\mathrm{m}_{2}$$ moves upward with an acceleration of $$2 \mathrm{~ms}^{-2}$$. The value of $$\mathrm{F}$$ is :
( Take $$\mathrm{g}=10 \mathrm{~ms}^{-2}$$ )
A parallel beam of light of wavelength $$900 \mathrm{~nm}$$ and intensity $$100 \,\mathrm{Wm}^{-2}$$ is incident on a surface perpendicular to the beam. The number of photons crossing $$1 \mathrm{~cm}^{2}$$ area perpendicular to the beam in one second is :
In Young's double slit experiment, the fringe width is $$12 \mathrm{~mm}$$. If the entire arrangement is placed in water of refractive index $$\frac{4}{3}$$, then the fringe width becomes (in mm):
The magnetic field of a plane electromagnetic wave is given by :
$$ \overrightarrow{\mathrm{B}}=2 \times 10^{-8} \sin \left(0.5 \times 10^{3} x+1.5 \times 10^{11} \mathrm{t}\right) \,\hat{j} \mathrm{~T}$$.
The amplitude of the electric field would be :